运动多项式(与非零实际规范的双重四聚体上的多项式)描述了合理运动。我们提出了减少有界运动多项式的必要条件,以将因素化为线性因子,并给出了一种计算它们的算法。我们可以使用这些线性因子来构建机制,因为分数对应于合理运动分解为简单旋转或翻译。有界的运动多项式始终在乘以合适的实际或四元素多项式后,将分解成线性因子。我们的因素化标准使我们能够改善早期算法,以计算合适的真实或四元素多项式辅助因素。
translated by 谷歌翻译
我们提出了一个具有两个自由度的闭环8R机制,其运动表现出了好奇的特性。在其配置品种的二维组成部分的任何点上,都可以在保持一个自由度的同时固定每一个关节。这表明均匀轴和奇数轴总是形成贝内特机制。在这种机制中,相反的距离和角度相等,所有偏移均为零。8R机制具有四种“完全排列”的构型,其中任何一对连续轴的共同正态重合。
translated by 谷歌翻译
神经网络是众多远期过程的强大代孕。这种代理人的反转在科学和工程中非常有价值。成功的神经反向方法的最重要属性是在现实世界中(即在本地远期过程(不仅是学识渊博的替代)中部署在现实世界中时的解决方案的性能。我们建议自动化,这是一种高度自动化的神经网络代理的方法。我们的主要见解是在可靠数据附近寻求反向解决方案,这些解决方案已被取样形式,并用于训练替代模型。自动信息通过考虑替代物的预测不确定性并在反转过程中最小化,从而找到了这种解决方案。除了高精度外,自动验证液可以实现溶液的可行性,并带有嵌入式正规化,并且不含初始化。我们通过解决控制,制造和设计中的一系列现实世界问题来验证我们的方法。
translated by 谷歌翻译
视频框架插值(VFI)实现了许多可能涉及时间域的重要应用程序,例如慢运动播放或空间域,例如停止运动序列。我们专注于以前的任务,其中关键挑战之一是在存在复杂运动的情况下处理高动态范围(HDR)场景。为此,我们探索了双曝光传感器的可能优势,这些传感器很容易提供尖锐的短而模糊的长曝光,这些曝光是空间注册并在时间上对齐的两端。这样,运动模糊会在场景运动上暂时连续的信息,这些信息与尖锐的参考结合在一起,可以在单个相机拍摄中进行更精确的运动采样。我们证明,这促进了VFI任务中更复杂的运动重建以及HDR框架重建,迄今为止仅考虑到最初被捕获的框架,而不是插值之间的框架。我们设计了一个在这些任务中训练的神经网络,这些神经网络明显优于现有解决方案。我们还提出了一个场景运动复杂性的度量,该指标在测试时间提供了对VFI方法的性能的重要见解。
translated by 谷歌翻译
由于基础物理学的复杂性以及捕获中的复杂遮挡和照明,从稀疏多视频RGB视频中对流体的高保真重建仍然是一个巨大的挑战。现有的解决方案要么假设障碍和照明知识,要么仅专注于没有障碍物或复杂照明的简单流体场景,因此不适合具有未知照明或任意障碍的现实场景。我们提出了第一种通过从稀疏视频的端到端优化中利用管理物理(即,navier -stokes方程)来重建动态流体的第一种方法,而无需采取照明条件,几何信息或边界条件作为输入。我们使用神经网络作为流体的密度和速度解决方案函数以及静态对象的辐射场函数提供连续的时空场景表示。通过将静态和动态含量分开的混合体系结构,与静态障碍物的流体相互作用首次重建,而没有其他几何输入或人类标记。通过用物理知识的深度学习来增强随时间变化的神经辐射场,我们的方法受益于对图像和物理先验的监督。为了从稀疏视图中实现强大的优化,我们引入了逐层增长策略,以逐步提高网络容量。使用具有新的正则化项的逐步增长的模型,我们设法在不拟合的情况下解除了辐射场中的密度彩色歧义。在避免了次优速度之前,将预验证的密度到速度流体模型借用了,该数据低估了涡度,但可以微不足道地满足物理方程。我们的方法在一组代表性的合成和真实流动捕获方面表现出具有放松的约束和强大的灵活性的高质量结果。
translated by 谷歌翻译
我们解决了从2D图像的集合中生成新颖图像的问题,显示了折射率和反射性物体。当前溶液在排放模型之后采用不透明或透明的光传输。取而代之的是,我们优化了折射率(IOR)的3D变量指数的领域,并通过它痕迹光线根据eikonal Light Transfers的定律弯曲朝向上述IOR的空间梯度弯曲。
translated by 谷歌翻译